
RESEARCH IN FUNCTIONALLY DISTRIBUTED COMPUTER SYSTEMS DEVEI.OPME--ETClU)
MAR 76 P S FISHER, F MARYANSKI DAA629-76-6-0108

UNCLASSIFIED CS-76-08AN

SLEVEL3
AIRMICS WtUAmy Indrf 313 Culaulw Old.ARnIC IMlemm Infornation aind .GA Instimiw of Tedwwlow

Compuwi Science /,,, Atlu. GA 302

Technical Report

RESEARCH IN FUNCTIONALLY
!DISTRIBUTED COMPUTER

SYSTEMS DEVELOPMENT

Kansas State University

Virgil Wallentine

Principal Investigator

Approved for public reme; disiribution unlimited

DTIC
\4JWE III ELECTi"U
~E V0AI. Ill ~1ONTAUG 2 0 1981&EV .IAIN LiSP4

F

U.S. ARMY COMPUTER SYSTEMS COMMAND FT BELVOIR, VA 22060

81819 073

UNCLASSIFIED ne d RA RUIN
SECURITY CLASSIFICATION OF THIS PAGE (Wh~o,, late nee)A

REPORT DOCUMENTATION PAGE BEFORE COMPLETING F'ORM

.- R-EPORT N'W1U P 0 GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

(i(y. I'FtA 4- lJY D-14 a3 .16--

EVALUATION OF PONVERSION TO A BA DATA-4 j~~-~,.
,Es~~-~t AC-N DA.TPETAEPR PROOEE

BASE MANAGEMEA47E SYSTEM. C-ND Iterim
6. PERPORI4ING ORG. REPORT NUMBER

____ ____ ___ ____ ___ ____ ___ ____ ___ ____ ___ 9~ 76-08-

7.e /MaNRanski S. CONTRACT OR GRANT NUMBER(*)

as S tat Unierit

Virgil E]Wallentine\ Ci WOLUI UBR
AME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Computer Science
Manhattan, KS 66506 4______________

II. CONTROLLING OFFICE NAME AND ADDRESS 1.AP *g~I.--

US Army Research Office Mriw7
P 0 Box 12211 .13. 'NUMBER OF PAGES

Research Triangle Park, NC 27700 18 pages
14. MONITORING AGENCY NAME & ADDRESS(Ji diff erent from Controlling Office) IS. SECURITY CLASS. (ol this report)

US Army Computer Systems Command Ucasfe
Attn: CSCS-AT Unlssfe

Ft. Belvoir, VA 22060 ~Sa. DECL ASSI FICATfONi DOWNGRADING

(17: 1)SCHEDULE

1S. DISTRIBUTION STATEMENT (of tis Repor?7-._.--- 9

Approved for pu 1-release; /distribution unlimited.

18. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

I9. KEY WORDS (Continu~e an reverse side it necessary and Identify by block number)

DBMS Acces_.
Back-end Computer Ti7
Minicomputer

4 ~20. ABSTRACT (Continue on reverse side it necessary and identify by block number)

-over- -

DD V(M1473 r0...I OF I ~OAV 65 VS 0VsOI. CTr C -as "

gt3 SEUI1I!V C1 A' !L . '.-ION OF THIS P~'. (i' ein ataFw,

39 1~e -14 .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE("m D1at EteWed)

-ABSTRACT-

This paper presents a methodology for and an evaluation
of the feasibility of converting a typical data processing
system to a data base management system. This methodology
is applied to a particular system. The data base management
system under evaluation uses a back-end minicomputer to
perform the data management functions. The evaluation is
made in terms of changes in system resources# program
requirements, and human factors. The results of this study
provide considerable insight into the problem of conversion
to a data base management system and suggest guidelines for
the evaluation of any proposed data base conversions.

U S

i UNCLASSIFIED

INTRODUCTION

As the computer industry has grown in experience and application,

there is an area which has received much attention; that is, the area of

managing, organizing and storing data. Problems of reliability, security

and timeliness with data have drawn almost every computer user's attention.

Since the late 60's, there has been a growing interest in providing

software which separates (at a cost) the manipulation aspect from usual

crganizational and accounting functions found in a normal program. Such

"housekeeping" chores can require significant efforts on the part of

programmers. Further, once such chores are initially done they will

have to be redone time and again, since requirements and usage will

change.

With the advent of Data Base Management Systems (DBMS) and assoc-

iated facilities (Data dictionaries, query languages, report writers,

etc.) the task of data organization, management, and storage has been

given to a select group of specialists. These specialists (the Data

Base Administrators (DBA) provide the necessary control, logging, and

access information and software to the program. Such activity relieves

the programmers of this overhead function allowing them to concentrate

on the necessary manipulations.

This paper focuses on some alternatives with respect to a DBMS

in terms of a entra-ized versus decentralized environment. The first

section of this paper deals with the concepts and tradeoffs involved

ii considering the two environments. The second section of the paper

then deals with problems which are encountered in a distributed data

base management system. These problems include deadlock, rollback

and recovery, data conversion, redundancy, and communication and oper-

ating system requirements for effective distribution.

4Fi.

II. THE DBMS

If the total data processing application of an organization is a

payroll, which is a sequential operation, then there is good reason not

to acquire a DBMS. However, if data is accessed randomly, and/or each

separate department maintains its own copy and version and any one of a

number of other problems exists, then a DBMS may be of some use. At

least a new dimension of problems will be introduced, hopefully at the

expenses of a far larger number of problems.

DBMS systems support essentially four different structures:

Network, Hierarchical, Inverted, and Relational (no fully relational com-

mercial DBMS is available yet). Each of the techniques has its own advan-

tages and disadvantages which are not discussed further here, although

careful study is required before acquiring a DBMS.

The DBMS will require from minimal to significant machine resources.

It can increase file size requirements, slow processing, require addi-

tional manpower resourccs, and be of a significant cost. However, through

its use resources can be released, data more accurately controlled, pro-

grams developed more quickly, and the continual modifications and changes

incorporated without noticeable effect on the user.

DBMS systems are found on every architecture from the small to the

very large. In fact, more than one DBMS is found on the full spectrum

of machine -.,ii.ectures with user transparency more real than imagined.

Because of this feature it is quite possible now to consider as a reason-

able alternative to a single, centralized, large system supporting a DBMS,

a spectrum of machines each supporting a local DBMS and each in support

of the other.

III. THE ALTERNATIVE - DISTRIBUTED DBMS

With continued growth in data and processing requirements come the

continual requirement for upgrading and increasing storage and processing

facilities. As a viable option to growth of the single large processor,

the possibility exists that required capabilities can be obtained by

addition of smaller processors in the fashion shown in Figures l.a - l.c.

Each figure portrays an increasingly complex environment. adithin the

three figures there are three functional machine categories shown, and

these are described in the following paragraphs.

The first is that of a host. This machine can be of any size and

architecture. Typically it is a large machine which serves the complete

variety of users. This nachine may also support DBMS activities.

The second machine category shown is that of a back-end machine.

This machine can also be any one of a variety of architectures, although

typically it is a minicomputer. The purpose of this machine is to support

some or all of the data base activity. A typical software configuration

for the host and back-end is shown in Figure 2. Essentially, the opera-

tion of this configuration i- as follows: A host program requiring a

DBMS function executes a call to the DBMS monitor. This residual monitor

forwards the call to the back-end machine which allocates its resources

(if available) to provide the requested service. In order to satisfy

the requested service, the back-end may have to execute several disk

reads, along with substantial processing. Once the requested information

is obtained, it i-; :urned back to the host monitor which makes it

available to the requesting task. Figure 3 shows the relationship

obtained by simulation between data base requests on a host only, a

host and back-end where the back-end provides from zero to five levels

of multi-programming (1].

The last machine category shown in Figure l.c is that of a bi-func-

tional machine. In this situation a machine is both serving in the back-

~~k.,

end mode as well as the host mode. However, unlike the strictly host/

back-end function which implied that machines be co-located, bi-func-

tional machines can provide the environment for a distributed data base

system.

Before dealing with specific problems attendant in a distributed

network, it is worth while to consider some advantages and disadvantages

associated with both centralized and decentralized concepts. Neither

option is clearly advantageous in all cases, and hence the decision process

must be carefully considered.

The advantages of a centralized system are concerned with control,

protection, and redundancy. With respect to control, a central facility

can provide better qualified DBA personnel to control growth, development

and deployment of data. Another advantage is in the area of protection.

It is obvnus that data collected in one location can be more easily pro-

tected than data which is distributed. The last area to be mentioned is

that of redundancy. All too often the temptation exists to proliferate

copies of data. This proliferation with its attendant problems is best

controlled within a central facility.

The disadvantages to a single centralized system is alleviated by

the introduction of back-ends or local networks. However, if one consi-

ders the cmi.Atant upgrade problem which can require from slight to major

software modifications coupled with the ever increasing complexity of

supplied equipment and software, then the problems can be truly over-

whelming. Unfortunately, although source language standards exist, they

are almost always ignored. The last disadvantage occurs in costs of the

ever increasing systems. For this reason, upgrades are often delayed,

which causes repercussions in service and growth.

I'"h rp-ect to decentralized systems, the advantages lie in the

.

areas of data availability, smaller physical machine requirements, and

a potential for providing better service. Obviously, if a particular

group of users requires access to a collection of data, the data and the

machine should be located in proximity to those users. In most cases,

the supplied machine resources will be smaller, easier to maintain, service,

and use. Furthermore, any required upgrade in facilities can be made on

a local basis, not interfering with other nonrelated users.

The disadvantages stem from a lack of central control with attendant

growth in redundant data, and the problems of resolving resultant data

descrepancies.

With these considerations we then propose the system as shown in

Figurc 4. Such a system consists of machine groups (clusters) tightly

linked together with high-speed communication lines. It is quite possible

to talk about the degenerative case where a cluster consists of only a

single machine. In general, a cluster might consist of multiple heter-

ogeneous machines, each of which may be bi-functional or dedicated to a

specific task. Between each cluster communication can take place over

any standard communciation lines using any communication protocol desired.

IV. PROBLEMS IN DISTRIBUTED DATA BASE SYSTEMS

While distributed data base systems offer many potential advantages

(as discussed in the preceeding sections), the data base industry has not

yet advanced to I point of producing a commercially available package.

Several formidable obstacles lie in the path of a generalized, distributed

DBMS. A review of these problems is presented here along with a discussion
fi

of potential solutions.

IV.l. DEADLOCK

The phenomenum of deadlock has long been an important problem for

operating system designers. In general, deadlock occurs when a set of

6

tasks have blocked each other from execution by requesting resources

held by other tasks in the set while holding resources requested by other

tasks. In terms of data base management, the resources are data records

or areas.

In many situations, deadlock can be avoided by limiting the updat,

ability for a portion of the data base to a single task. This is not an

attractive approach for distributed systems, since one of the motivating

factors for a distributed DBMS is the sharing of data. If shared update

is permitted in a DBMS, then the potential for deadlock exists. Deadlock

may be handled by either detecting its c:istence and then resolving the

conflict or by preventing all possible deadlock occurrences. Most existing

single machine systems use deadlock detection and rollback as their means

of treating the deadlock problem.

In a distributed DBMS, the most costly operation is intermachine

communication. Therefore, the amount of intermachine communication be-

comes the dominant factor when evaluating the performance of deadlock

detection and deadlock prevention schemes for distributed data bases.

Deadlock prevention in a distributed DBMS requires that each task be

informed as to which records that it may access are shared. For this

informatioo to be meaningful, only the records shared with currently acti.

tasks sho . . icluded. This implies that whenever a task that updates

shared records is activated, it must send a message to all other tasks.

When this has taken place, the new task can proceed. Whenever a need to

access a shared record arises, a prevention algorithm can be invoked to

determine if the access may proceed. If not, the task is blocked until

the resources are available.

Deadlock detection in a distributed DBMS involves first identifying

taqks blocking each other from a collection of sha,1

...............................

records. Once the set of conflicting resources are identified, one of the

tasks must be rolled back to some point that will free the resources

necessary to break the deadlock.

It is difficult to project the performance effects of deadlock

detection and prevention in a distributed DBMS. A prevention scheme

will block tasks in some situations in which no deadlock would actually

occur. Detection takes no unnecessary actions in this respect. However,

as indicated in the next subsection, rollback in a distributed DBMS

could cause substantial performance degradation.

IV.2. ROLLBACK AMD RECOVERY

Since all data base systems are susceptible to both hardware and

software failure, recovery procedures are necessary to insure the

integrity of the data base and to minimize the effect of system failures.

Recovery procedures are similar to those for handling deadlock in that

they become increasingly complex as the data base becomes more integrated.

The major difficulty in data base recovery is that an erroneous application

task may produce incorrect data which then may be accessed by other tasks.

If not handled properly the bad data may have a cascading effect throughout

the data base and thus damage its integrity as shown in Figure 5.

There are two extreme approaches to DBMS recovery for an application

program failure. Some systems rollback only the terminated program while

others rollback the untire data base to the point of initiation of the

offending task. The former approach does not effect tasks which have no

access to the polluted data although it may permit incorrect data to

have been used by other application task. The latter approach is more

conservative since it insures correct data at the cost of potentially

rolling back tasks which did not interact with the polluted data.
S c r

i Selective recovery is an intermediate recovery strategy which

o- ... |1 II I

entails rolling back only those tasks that are operating with polluted

data. Overall system throughput and data base access would both increase

under a selective recovery strategy. In order for a selective scheme to

be worthwhile, data base integrity must be maintained. Therefore, the

scheme must be certain of including all tasks that have used incorrect

data in the recovery process. In order to accomplish selective rollback,

information on the interaction between tasks must be maintained. The

interaction i,1fo.-,Aion would take the form of a potential shared data

list which can be computed from the sub-schemas of the application tasks

prior to execution. Conunication must be limited to one transmission

to each back--end processor per rollback operation if performance is not

to be effected. Maryanski and Fisher [21 have developed a selective

recovery scheme for distributed data base systems.

IV.3. DATA CONVERSION

The conversion of data is one problem that is unique to distributed

data base systems. The conversion problem has two aspects: the physical

translation of the data and the logical conversion of the data base

structure. The need for physic.' conversion arises when processors with

different internal codes reside in the data base network. The code

conversion problem is not difficult for any pair of machines. However,

if distinct machines reside in the network, then it would be necessary

for each processor node to contain K-1 translation routines. An alter-

native appro -a is to define a network standard code which is used in

all intermachine communciation. This method results in a maximum of 2

translation routines per machine.

The most significant effort aimed at a generalized translation

scheme for data bases is the University of Michigan Data Translation

Project 13-51. Under this approach, all data bases are described using

a universal Stored Data Definition Language. The translations are driven

by tables produced by compilers for the SDDL and the Translation Defini-

tion Language (TDL). The TDL is employed to express the relationship

between the source and target data bases. This translation methodology

requires only one translation program at each DBMS node. However, the

translator must be supplemented with a SDDL Table and (K-1) TDL Tables.

IV.4. OPERATING SYSTEMS

A DBMS on a single computer relies upon the operating system of the

computer to perform functions such as I/O and task management. When the

DBMS system software is distributed over a network its relationship with

the operating systems of the network nodes is altered.

Several forms of operating systems may be applicable in a distributed

DBMS. The most straightforward approach is to maintain a completely gen-

eral purpose operating system on each processor. However, if primary

memory is a critical resource on a processor, it may be desireable to

employ a reduced version of the operating system. Since the DBMS software

is distributed functionally between host and back-end processors, it may

be desireable to distribute operating system functions in a similar manner.

For instance, since the host machine does not perform any data base I/O

operations, the appropriate drivers could be removed from that machine's

operating system. The concept of subsetting general purpose operating

systems can be extended to developing of a specially tailored operating

system for data b. ,e machines [6]. Tailored operating systems are parti-

cularly well suited for hardware and stand alone data base machines [7-9 1.

IV.5. COMMUNICATIONS

If a distributed DBMS is to provide acceptable performance, inter-

machine communication must be carried out efficiently. In addition, the

communication process should be transparent to the application programmer.

"1

LU

These requirements ran be satisfied by a standardized, portable

comunications interface that completely relieves the DBMS of any

communication functions. Portability is an important factor if the

network is to expand. It is highly desireable to have a standard

communication system that can easily be implemented upon a new archi-

tecture. If portability is a requirement, implementation of the

communication (and data base) software should be in a common high order

language. Descriptions of communication interfaces for data base systems

built upon networks can be found in References [9-101.

IV.6. INTEGRITY

The distribution of a data base complicates the chore of maintaining

the data base integrity. However, under certain circumstances, a distri-

buted DBMS provides greater security than a single machine system. In

a geographically distributed DBMS the involvement of additional compu-

tation and communication components increases the probability of a hard-

ware failure. On the other hand, the communications software provides a

means of checking the status of lines and processors and thus identifying

a failure more rapidly than in the case of a single processor DBMS.

A DBMS with a dedicated back-end processor can be made more secure

than a DBMS on a single, general purpose machine. The reason for increased

security is that no unauthorized programs can be executed on the back-end

machine s;in .L i imited to the execution of data base commands. If the

communications lines can be secured (not an easy task). Then the monitoring

of data base activity can be prevented.

IV.7. REDITNDANCY

In a well designed, integrated data base, data redundancy should be

quite rare. However, if the data base is to be distributed geographically,

."A '

it may become desireable from a performance standpoint to maintain

redundant copies of data at various locations. Naturally, the update

frequency of redundant data should be quite low. However, the updating

of redundant data in a distributed DBMS produces considerable overhead

since multiple data base operations must be generated.

Redundant data in a distributed DBMS becomes most troublesome when

a recovery operation involves modified redundant data. The tasks of

determining the effect on other programs and data of multiple copies

of incorrect data items can become quite complex in even a moderately

integrated distributed DBMS. Since the update of redundant data can

not be performed at precisely the same moment at all nodes of the

network, sequencing of the updates is also a problem for the recovery

procedure.

At the present time, a recovery procedure for a distributed DBMS

which can handle redundant data has not yet been proposed.

!I

-- • -

i

v. CONCLUSION

Because of increasingly complex systems and supporting software of

minicomputers and their relatively low costmuch attention has been

given to minicomputer networks or minicomputers in support of larger

systems. With this interest it is important to consider that achieving

data distribution over heterogeneous machines and systems is not a sim-

ple task. However, several developments are underway at multiple loca-

tions to provide such a facility which is independent of the hardware.

The considerations in this paper are alternatives and problems which

we have faced in designed and implimenting a distributed system. Thus,

the purpose of this paper is to enumerate and identify problems which

must be solved when designinga network of machines and the attendant

software for implementing a distributed data base management system.

REFERENCES

1. Maryanski, F.J. and Wallentine, V.E., "A Sinulation Model of a Back-End
Data Base Management System," Proc. Pittsburgh Conference on Modeling
and Simulation, Apr. 1976, pp. 243-248.

2. Maryanski, F.J. and Fisher, P.S., "Rollback and Recovery in Distributed
Data Base Systems," TR CS77-05 , Computer Science Department, Kansas
State University, Manhattan, KS. 66506. Feb. 1977.

3. Yamaguchi, K. and Merten, A.G., "Methodology for Transferring Programs
and Data," Proc. ACM SIGMOD Workshop, May 1974, pp. 141-155.

4. Merten, A.G. and Fry, J.P., "A Data Description Language Approach to
File Translation," Proc. ACM SIGMOD Workshop, May 1974, pp. 191-205.

5. Birss, E. W. and Fry, J.P., "Generalized Software for Translating Data,"
Proc. AFIPS National Computer Conference, Vol. 45, June 1976, pp. 889-897.

6. Baum, R.I. and Hsiao, D.K., "Database Computers--A Step Towards Database
Utilities," IEEE Trans. on Computers, Vol. C-25, No. 12, Dec. 1976, pp.
1254-1259.

7. Lowenthal, E.I., "The Backend Computer," MRI Systems Corp., P.O. Box 9968,
Austin, TX. 78766, Apr. 1976.

8. Ozkarahan, E.A., Schuster, S.A., and Smith, K.C., "RAP--An Associative
Processor for Data Base Management, Proc. AFIPS National Computer
Conference, Vol. 44, May 1975, pp. 379-387.

9. Marill, T. and Stern, D., "The Datacomputer--A Network Data Utility,"
Proc. AFIPS National Computer Conference, Vol. 44, 'May 1975, pp. 389-395.

10. Wallentine, V.E., "MIMICS--The Capabilities to be Developed," Computer
Science Department, Kansas State University, Manhattan, KS. 66506,
May, 1976.

HOST I HOST 2 .. . HOST M

BACKEND

a. A Multi-host System with a Common Backend Machine
Supporting DBMS Function

BAKND1BACKEND 2 ... BACKEND M

b. A Single Host System with Multiple Backend Systems
Each Supporting a DBMS system

Figure 1: The Various Configurations Involving a Data Base Function

HOST 1I . HOST M

BACKEND

A

V

BI-FUNCT IONAJ~ Bl-FUNCTIONAL . .. BI-FU\NCTIOAl
MACHINE 1 MACHINE 2 MACHINE N

c. A Multi Host Backend and Bi-Functional (Host Backend
Combination) Distributed Network.

Figure 1 (Continued): The Various Configurations

Involving a Data Base Function

USER PROGRAM1 N

UWA SYS, LOC. DB:iS INTERFACE 0
P S

USER PROGRWi I E Y HOSTUW SS LC R S
UWA SYS, LO. IITERFACE A T

SYSTEi BUFFERS T

ICCS G

ICCS

INTERFACE
0

DBYIS p----- E S BACK-ErID
SUB SUB EDL DML R

c S S TASK TASK A S
H C C i K T T
E H H EE E E
M M BUFFERS N M
A A A '

SECO:;DARY
STORAGE

FIGURE 2: SOFTWARE DISTRIBUTION IN A HOST AND BACK-END SYSTEM

4500

4.200

3900
3600

3300
3000

2700
=- 240

° 2100
= 1800

1500
1200

900
60

300

1 2 3 4 5

H LEVEL OF MULTI-PROGRAMMING
0
S IN BACK-END
T

FIGURE 3: RELATIONSHIP OF DBMS REQUESTS

AND A CONFIGURATION OF HOST ONLY AND HOST/BACK-END

WHERE THE BACK-END IS MULTI-PROGRAMMED AT SEVERAL LEVELS 'I

CLUSTER I

CLUSTER J

FIGURE 4: A NETWORK OF MACHINES WHErE EACH NODE

OF THE NETWORK IS A CLUSTER OF ONE OR MORE MACHINES

.... ..

\ \
I . -*'

PROGRAM PROGRAM PROGRAM

1 2 3

-- A B

PROGRAM 1

CRASHES

TIME

FIGURE 5: CASCADING EFFECT OF POLLUTED DATA

|1I'ATE

7- •d

